Palindromic Richness

Amy Glen

LaCIM, Université du Québec à Montréal

amy.glen@gmail.com
http://www.lacim.uqam.ca/~glen

Department of Mathematics and Statistics
@ University of Winnipeg

July 25, 2008
Outline

1. Rich Words: A Brief Overview
2. Properties & Examples
3. Recent Results
4. Further Work
Outline

1 Rich Words: A Brief Overview

2 Properties & Examples

3 Recent Results

4 Further Work
What Are Rich Words?

- Vague Answer: finite and infinite words that are “rich” in palindromes in the utmost sense.
What Are Rich Words?

- **Vague Answer:** finite and infinite words that are “rich” in palindromes in the utmost sense.

- A *palindrome* is a finite word that reads the same backwards as forwards.
What Are Rich Words?

- **Vague Answer**: finite and infinite words that are “rich” in palindromes in the utmost sense.

- A *palindrome* is a finite word that reads the same backwards as forwards.

 English examples: eye, civic, radar, glenelg (Aussie suburb).
What Are Rich Words?

- **Vague Answer:** finite and infinite words that are “rich” in palindromes in the utmost sense.

- A *palindrome* is a finite word that reads the same backwards as forwards.

 English examples: eye, civic, radar, glenelg (Aussie suburb).

- **Droubay-Justin-Pirillo, 2001:** any finite word w of length $|w|$ contains at most $|w| + 1$ distinct palindromes (including the empty word ε).
What Are Rich Words?

- **Vague Answer**: finite and infinite words that are “rich” in palindromes in the utmost sense.

- A *palindrome* is a finite word that reads the same backwards as forwards.

 English examples: eye, civic, radar, glenelg (Aussie suburb).

- **Droubay-Justin-Pirillo, 2001**: any finite word w of length $|w|$ contains at most $|w| + 1$ distinct palindromes (including the empty word ε).

- **G.-Justin, 2007**: initiated a unified study of finite and infinite words that are characterized by containing the maximal number of distinct palindromes, called *rich words*.
What Are Rich Words?

- **Vague Answer:** finite and infinite words that are “rich” in palindromes in the utmost sense.

- A *palindrome* is a finite word that reads the same backwards as forwards.

 English examples: eye, civic, radar, glenelg (Aussie suburb).

- **Droubay-Justin-Pirillo, 2001:** any finite word \(w \) of length \(|w| \) contains at most \(|w| + 1 \) distinct palindromes (including the empty word \(\varepsilon \)).

- **G.-Justin, 2007:** initiated a unified study of finite and infinite words that are characterized by containing the maximal number of distinct palindromes, called *rich words*.

- **Ambrož-Frougny-Masáková-Pelantová, 2005:** independent work on “full words”, following earlier work of Brlek-Hamel-Nivat-Reutenauer, 2004.
Definition

A finite word w is *rich* iff w contains exactly $|w| + 1$ distinct palindromes.
Definition

A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples

- $abac$ is rich, whereas $abca$ is not rich.
Definition
A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples
- $abac$ is rich, whereas $abca$ is not rich.
- The word $rich$ is rich . . . and $poor$ is rich too!
Formal Definitions & Examples

Definition
A finite word w is *rich* iff w contains exactly $|w| + 1$ distinct palindromes.

Examples
- $abac$ is rich, whereas $abca$ is not rich.
- The word $rich$ is rich ... and $poor$ is rich too!
- But $plentiful$ is not rich.
Formal Definitions & Examples

Definition

A finite word w is **rich** iff w contains exactly $|w| + 1$ distinct palindromes.

Examples

- $abac$ is rich, whereas $abca$ is **not** rich.
- The word **rich** is rich ... and **poor** is rich too!
- But **plentiful** is not rich.

Definition

An infinite word is **rich** iff all of its factors are rich.
Formal Definitions & Examples

Definition
A finite word w is \textit{rich} iff w contains exactly $|w| + 1$ distinct palindromes.

Examples
- $abac$ is rich, whereas $abca$ is \textbf{not} rich.
- The word \textit{rich} is rich . . . and \textit{poor} is rich too!
- But \textit{plentiful} is not rich.

Definition
An infinite word is \textit{rich} iff all of its factors are rich.

Examples
- $a^\omega = aaaaaa \cdots$ and $ab^\omega = abbb \cdots$ are rich.
Formal Definitions & Examples

Definition
A finite word w is *rich* iff w contains exactly $|w| + 1$ distinct palindromes.

Examples
- $abac$ is rich, whereas $abca$ is not rich.
- The word rich is rich . . . and poor is rich too!
- But plentiful is not rich.

Definition
An infinite word is *rich* iff all of its factors are rich.

Examples
- $a^\omega = aaaaaa \cdots$ and $ab^\omega = abbb \cdots$ are rich.
- $(ab)^\omega = abababab \cdots$ and $(aba)^\omega = abaabaaba \cdots$ are rich.
Formal Definitions & Examples

Definition

A finite word \(w \) is *rich* iff \(w \) contains exactly \(|w| + 1 \) distinct palindromes.

Examples

- \(abac \) is rich, whereas \(abca \) is not rich.
- The word *rich* is rich . . . and *poor* is rich too!
- But *plentiful* is not rich.

Definition

An infinite word is *rich* iff all of its factors are rich.

Examples

- \(a^\omega = aaaaaa \cdots \) and \(ab^\omega = abbb \cdots \) are rich.
- \((ab)^\omega = abababab \cdots \) and \((aba)^\omega = ababaaba \cdots \) are rich.
- \(abc \) is rich, but \((abc)^\omega = abcabcabc \cdots \) is not rich.
Outline

1 Rich Words: A Brief Overview
2 Properties & Examples
3 Recent Results
4 Further Work
Characteristic Properties

Characteristic Property 1 (Droubay-Justin-Pirillo, 2001)

A finite word w is rich if and only if every prefix (resp. suffix) of w has a unioccurrent palindromic suffix (resp. prefix).
Characteristic Properties

Characteristic Property 1 (Droubay-Justin-Pirillo, 2001)

A finite word w is rich if and only if every prefix (resp. suffix) of w has a **unioccurrent** palindromic suffix (resp. prefix).

To see this . . .

- Let $P(w)$ denote the number of palindromic factors of w.
Characteristic Properties

Characteristic Property 1 (Droubay-Justin-Pirillo, 2001)

A finite word w is rich if and only if every prefix (resp. suffix) of w has a unioccurrent palindromic suffix (resp. prefix).

To see this...

- Let $P(w)$ denote the number of palindromic factors of w.
- For any word u and letter x,

$$P(ux) = \begin{cases} P(u) & \text{if } ux \text{ does not have a unioccurrent palindromic suffix}, \\ P(u) + 1 & \text{if } ux \text{ has a unioccurrent palindromic suffix}. \end{cases}$$
Characteristic Properties

Characteristic Property 1 (Droubay-Justin-Pirillo, 2001)

A finite word w is rich if and only if every prefix (resp. suffix) of w has a unioccurrent palindromic suffix (resp. prefix).

To see this . . .

- Let $P(w)$ denote the number of palindromic factors of w.
- For any word u and letter x,

$$P(ux) = \begin{cases} P(u) & \text{if } ux \text{ does not have a unioccurrent palindromic suffix}, \\ P(u) + 1 & \text{if } ux \text{ has a unioccurrent palindromic suffix}. \end{cases}$$

- Therefore, by induction, $P(w)$ is the number of prefixes of w that have a unioccurrent palindromic suffix.
Characteristic Properties

Characteristic Property 1 (Droubay-Justin-Pirillo, 2001)

A finite word w is rich if and only if every prefix (resp. suffix) of w has a unioccurrent palindromic suffix (resp. prefix).

To see this . . .

- Let $P(w)$ denote the number of palindromic factors of w.
- For any word u and letter x,

$$P(ux) = \begin{cases}
P(u) & \text{if } ux \text{ does not have a unioccurrent palindromic suffix}, \\
P(u) + 1 & \text{if } ux \text{ has a unioccurrent palindromic suffix}.
\end{cases}$$

- Therefore, by induction, $P(w)$ is the number of prefixes of w that have a unioccurrent palindromic suffix.
- Hence $P(w) \leq |w| + 1$.

Amy Glen (LaCIM) Rich Words July 2008 7 / 22
Characteristic Properties

Characteristic Property 1 (Droubay-Justin-Pirillo, 2001)

A finite word w is rich if and only if every prefix (resp. suffix) of w has a
unioccurrent palindromic suffix (resp. prefix).

To see this . . .

- Let $P(w)$ denote the number of palindromic factors of w.
- For any word u and letter x,

$$P(ux) = \begin{cases} P(u) & \text{if } ux \text{ does not have a unioccurrent palindromic suffix,} \\ P(u) + 1 & \text{if } ux \text{ has a unioccurrent palindromic suffix.} \end{cases}$$

- Therefore, by induction, $P(w)$ is the number of prefixes of w that have a unioccurrent palindromic suffix.
- Hence $P(w) \leq |w| + 1$.
- In particular $P(w) = |w| + 1$ (i.e., w is rich) if and only if each prefix of w has a unioccurrent palindromic suffix.
Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.
Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.
Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaabaaabaaaaabaaaaababaabaaaaaababaabaaaaababaabaaaaa
Characteristic Properties

Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaabaabaaaabaaaaab \cdots$
Characteristic Properties

Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaabaaabaaaabaaaaab \cdots$
Characteristic Properties

Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaabaabaaaabaaaaab \cdots$
Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaaabaaabaaaabaaabaaabaaabab\cdots$
Characteristic Properties

Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $a_{baab}aaabaaaabaaaaab\cdots$
Characteristic Properties

Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaabaaabaaaabaaaaab\cdots$
Characteristic Properties

Infinite case of Characteristic Property 1:

- An infinite word \(w \) is rich if and only if every prefix of \(w \) has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: \(ab\textcolor{red}{aabaa}abaaaabaaaaab \cdots \)
Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaabaaaabaaaabaaaabaaaabaaaab\cdots$
Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a
 unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaabbaaabaaaabaaabaaabababaab
Characteristic Properties

Infinite case of Characteristic Property 1:

- An infinite word \(w \) is rich if and only if every prefix of \(w \) has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: \(abaabaabaaaaabaaaaaab \cdots \)
Characteristic Properties

Infinite case of Characteristic Property 1:

- An infinite word w is rich if and only if every prefix of w has a unioccurrent palindromic suffix.

A new palindrome is introduced at each position in a rich word.

Example: $abaabaabaaaabaaaaab\cdots$

Characteristic Property 2 (Droubay-Justin-Pirillo, 2001)

A finite or infinite word w is rich if and only if for each factor u of w, every prefix (resp. suffix) of u has a unioccurrent palindromic suffix (resp. prefix).
Characteristic Properties

- Let u be a factor of a finite or infinite word w.
- A *complete return* to u in w is a factor of w having exactly two occurrences of u, one as a prefix and one as a suffix.
Characteristic Properties

- Let u be a factor of a finite or infinite word w.
- A *complete return* to u in w is a factor of w having exactly two occurrences of u, one as a prefix and one as a suffix.
- Example: $aabcbaa$ is a complete return to aa in $aabcbbaaba$ (rich).
Characteristic Properties

- Let u be a factor of a finite or infinite word w.
- A *complete return* to u in w is a factor of w having exactly two occurrences of u, one as a prefix and one as a suffix.
- Example: $aabcbaa$ is a complete return to aa in $aabcbaba$ (rich).

Characteristic Property 3 (G.-Justin, 2007)

A finite or infinite word w is rich if and only if for each palindromic factor p of w, every *complete return* to p in w is a palindrome.
Characteristic Properties

- Let u be a factor of a finite or infinite word w.
- A complete return to u in w is a factor of w having exactly two occurrences of u, one as a prefix and one as a suffix.
- Example: $aabcbaa$ is a complete return to aa in $aabcbbaaba$ (rich).

Characteristic Property 3 (G.-Justin, 2007)

A finite or infinite word w is rich if and only if for each palindromic factor p of w, every complete return to p in w is a palindrome.

Proof:
- (\Rightarrow): Suppose w is rich, but contains a non-palindromic complete return r to a palindrome p.
Characteristic Properties

- Let u be a factor of a finite or infinite word w.
- A *complete return* to u in w is a factor of w having exactly two occurrences of u, one as a prefix and one as a suffix.
- Example: $aabcbaa$ is a complete return to aa in $aabcbaba$ (rich).

Characteristic Property 3 (G.-Justin, 2007)

A finite or infinite word w is rich if and only if for each palindromic factor p of w, every *complete return* to p in w is a palindrome.

Proof:

1. (\Rightarrow): Suppose w is rich, but contains a non-palindromic complete return r to a palindrome p.
2. Then $r = pup$ for some non-palindromic word u.
Characteristic Properties

- Let \(u \) be a factor of a finite or infinite word \(w \).
- A \textit{complete return} to \(u \) in \(w \) is a factor of \(w \) having exactly two occurrences of \(u \), one as a prefix and one as a suffix.
- Example: \(aabcbaa \) is a complete return to \(aa \) in \(aabcbbaaba \) (rich).

Characteristic Property 3 (G.-Justin, 2007)

A finite or infinite word \(w \) is rich if and only if for each palindromic factor \(p \) of \(w \), every \textit{complete return} to \(p \) in \(w \) is a palindrome.

Proof:

- (\(\Rightarrow \)): Suppose \(w \) is rich, but contains a non-palindromic complete return \(r \) to a palindrome \(p \).
- Then \(r = pup \) for some non-palindromic word \(u \).
- But then \(r \) does not have a unioccurrent palindromic suffix, a contradiction.
Characteristic Properties

- Let u be a factor of a finite or infinite word w.
- A complete return to u in w is a factor of w having exactly two occurrences of u, one as a prefix and one as a suffix.
- Example: $aabcbaa$ is a complete return to aa in $aabcbbaaba$ (rich).

Characteristic Property 3 (G.-Justin, 2007)

A finite or infinite word w is rich if and only if for each palindromic factor p of w, every complete return to p in w is a palindrome.

Proof:

- (\Leftarrow): Suppose not. Let u be a factor of w of minimal length such that u is not rich.
Characteristic Properties

- Let u be a factor of a finite or infinite word w.
- A *complete return* to u in w is a factor of w having exactly two occurrences of u, one as a prefix and one as a suffix.
- Example: $aabcbaa$ is a complete return to aa in $aabcbaba$ (rich).

Characteristic Property 3 (G.-Justin, 2007)

A finite or infinite word w is rich if and only if for each palindromic factor p of w, every *complete return* to p in w is a palindrome.

Proof:

- (\Leftarrow): Suppose not. Let u be a factor of w of minimal length such that u is not rich.
- Then $u = xvy$ with x, y letters. By minimality xv is rich, and the longest palindromic suffix p of u occurs more than once in u.
Characteristics of Properties

Let u be a factor of a finite or infinite word w.

A complete return to u in w is a factor of w having exactly two occurrences of u, one as a prefix and one as a suffix.

Example: $aabcbaa$ is a complete return to aa in $aabcbbaaba$ (rich).

Characteristic Property 3 (G.-Justin, 2007)

A finite or infinite word w is rich if and only if for each palindromic factor p of w, every complete return to p in w is a palindrome.

Proof:

(\Leftarrow): Suppose not. Let u be a factor of w of minimal length such that u is not rich.

Then $u = xvy$ with x, y letters. By minimality xv is rich, and the longest palindromic suffix p of u occurs more than once in u.

Since all complete returns to palindromes are palindromes, we reach a contradiction to the maximality of p.
Characteristic Properties

Let \tilde{v} denote the *reversal* of a word v. Example: $v = abc$, $\tilde{v} = cba$.

Characteristic Property 4 (Bucci-De Luca-G.-Zamboni, 2008)

For any finite or infinite word w, the following conditions are equivalent:

i) w is rich;

ii) for each factor v of w, every factor of w beginning with v and ending with \tilde{v} and containing no other occurrences of v or \tilde{v} is a palindrome.
Characteristic Properties

Let \tilde{v} denote the *reversal* of a word v. Example: $v = abc$, $\tilde{v} = cba$.

Characteristic Property 4 (Bucci-De Luca-G.-Zamboni, 2008)

For any finite or infinite word w, the following conditions are equivalent:

i) w is rich;

ii) for each factor v of w, every factor of w beginning with v and ending with \tilde{v} and containing no other occurrences of v or \tilde{v} is a palindrome.

Proof:

i) \Rightarrow ii): Let $u = v \cdots \tilde{v}$. If v is a palindrome, then u is a palindrome.
Characteristic Properties

Let \tilde{v} denote the *reversal* of a word v. Example: $v = abc$, $\tilde{v} = cba$.

Characteristic Property 4 (Bucci-De Luca-G.-Zamboni, 2008)

For any finite or infinite word w, the following conditions are equivalent:

i) w is rich;

ii) for each factor v of w, every factor of w beginning with v and ending with \tilde{v} and containing no other occurrences of v or \tilde{v} is a palindrome.

Proof:

i) \Rightarrow ii): Let $u = v \cdots \tilde{v}$. If v is a palindrome, then u is a palindrome. Otherwise, for non-palindromic v, suppose u is not a palindrome ...
Let \tilde{v} denote the *reversal* of a word v. Example: $v = abc$, $\tilde{v} = cba$.

Characteristic Property 4 (Bucci-De Luca-G.-Zamboni, 2008)

For any finite or infinite word w, the following conditions are equivalent:

i) w is rich;

ii) for each factor v of w, every factor of w beginning with v and ending with \tilde{v} and containing no other occurrences of v or \tilde{v} is a palindrome.

Proof:

i) \Rightarrow ii): Let $u = v \cdots \tilde{v}$. If v is a palindrome, then u is a palindrome. Otherwise, for non-palindromic v, suppose u is not a palindrome . . .

\[u = \begin{array}{c|c|c} v & \cdots & \tilde{v} \\ \hline p & \cdots & p \end{array} \]

(p is longest palindromic suffix of u)

complete return to $p \rightarrow \text{palindrome}$
Let $\tilde{\nu}$ denote the reversal of a word ν. Example: $\nu = abc$, $\tilde{\nu} = cba$.

Characteristic Property 4 (Bucci-De Luca-G.-Zamboni, 2008)

For any finite or infinite word w, the following conditions are equivalent:

1. w is rich;
2. for each factor ν of w, every factor of w beginning with ν and ending with $\tilde{\nu}$ and containing no other occurrences of ν or $\tilde{\nu}$ is a palindrome.

Proof:

1. $i) \Rightarrow ii)$: Let $u = \nu \cdots \tilde{\nu}$. If ν is a palindrome, then u is a palindrome. Otherwise, for non-palindromic ν, suppose u is **not** a palindrome . . .

$$u = \begin{array}{c|c|c}
\nu & \cdots & \tilde{\nu} \\
p & \cdots & p \\
\end{array}$$

(p is longest palindromic suffix of u) . . . contradiction!

complete return to $p \rightarrow$ **palindrome**
Characteristic Properties

Let \(\tilde{v} \) denote the *reversal* of a word \(v \). Example: \(v = abc, \tilde{v} = cba \).

Characteristic Property 4 (Bucci-De Luca-G.-Zamboni, 2008)

For any finite or infinite word \(w \), the following conditions are equivalent:

i) \(w \) is rich;

ii) for each factor \(v \) of \(w \), every factor of \(w \) beginning with \(v \) and ending with \(\tilde{v} \) and containing no other occurrences of \(v \) or \(\tilde{v} \) is a palindrome.

Proof:

Conversely, ii) \(\Rightarrow \) every complete return to a palindromic factor \(v \) (\(= \tilde{v} \)) is a palindrome.
Let \tilde{v} denote the *reversal* of a word v. Example: $v = abc$, $\tilde{v} = cba$.

Characteristic Property 4 (Bucci-De Luca-G.-Zamboni, 2008)

For any finite or infinite word w, the following conditions are equivalent:

i) w is rich;

ii) for each factor v of w, every factor of w beginning with v and ending with \tilde{v} and containing no other occurrences of v or \tilde{v} is a palindrome.

Proof:

- Conversely, ii) \Rightarrow every complete return to a palindromic factor v ($= \tilde{v}$) is a palindrome.

- Thus w is rich by Characteristic Property 3.
Rich Examples

Purely Periodic Rich Infinite Words

\[(abcba)^\omega = abcbaabcbaabcba \cdots\]
Rich Examples

Purely Periodic Rich Infinite Words

\((abcba) \omega = abcbaabcbaabcba \cdots \)

\((aab^k aabab) \omega = aab^k aabab aab^k aabab aabab \cdots \) with \(k \geq 0 \)
Rich Examples

Purely Periodic Rich Infinite Words

- \((abcba)^\omega = abcbaabcbaabcba \cdots\)
- \((aab^k aabab)^\omega = aab^k aababaab^k aababaab^k aabab \cdots\) with \(k \geq 0\)
- \(v^\omega = vvv \cdots\) is rich \(\iff v^2\) is rich
Rich Examples

Purely Periodic Rich Infinite Words

- \((abcba)^\omega = abcbaabcbaabcba \cdots\)
- \((aab^k aabab)^\omega = aab^k aababaab^k aababaab^k aabab \cdots\) with \(k \geq 0\)
- \(v^\omega = vvv \cdots\) is rich \(\iff v = pq\) & all circular shifts are rich
Rich Examples

Purely Periodic Rich Infinite Words
- \((abcba)\omega = abcbaabcbaabcba \cdots\)
- \((aab^k aabab)\omega = aab^k aababaab^k aababaab^k aabab \cdots\) with \(k \geq 0\)
- \(v\omega = vvv \cdots\) is rich \(\iff v = pq\) & all circular shifts are rich

Other Rich Infinite Words
- \(abcd\omega = abcd\omega \cdots\)
Rich Examples

Purely Periodic Rich Infinite Words

- \((abcba)^\omega = abcbaabcbaabcba \cdots\)
- \((aab^k aabab)^\omega = aab^k aababaab^k aababaab^k aabab \cdots\) with \(k \geq 0\)
- \(v^\omega = vvv \cdots\) is rich \(\iff\) \(v = pq\) & all circular shifts are rich

Other Rich Infinite Words

- \(abcd^\omega = abcddd \cdots\)
- \(aba^2 ba^3 ba^4 ba^5 b \cdots\)
Rich Examples

Purely Periodic Rich Infinite Words

1. \((abcba)^\omega = abcbaabcbaabcba \cdots\)
2. \((aab^k aabab)^\omega = aab^k aababaab^k aababaab^k aabab \cdots\) with \(k \geq 0\)
3. \(v^\omega = vvv \cdots\) is rich \(\iff v = pq\) & all circular shifts are rich

Other Rich Infinite Words

1. \(abcd^\omega = abcddd \cdots\)
2. \(aba^2 ba^3 ba^4 ba^5 b \cdots\)
3. \(\lim_{n \to \infty} \sigma^n(a) = ababbabbbbbababbababbbbbbabbaba \cdots\)
 where \(\sigma: a \mapsto aba, b \mapsto bb\) (Cassaigne, 1997).
Rich Examples

Purely Periodic Rich Infinite Words

- \((abcba)\omega = abcbaabcbaabcba \cdots\)
- \((aab^k aabab)\omega = aab^k aababaab^k aababaab^k aabab \cdots\) with \(k \geq 0\)
- \(v^\omega = vvv \cdots\) is rich ⇔ \(v = pq\) & all circular shifts are rich

Other Rich Infinite Words

- \(abcd\omega = abcddd \cdots\)
- \(aba^2 ba^3 ba^4 ba^5 b \cdots\)
- \(\lim_{n \to \infty} \sigma^n(a) = ababbababbbbbbababbababbbbbbbbababbbba \cdots\)
 where \(\sigma : a \mapsto aba, b \mapsto bb\) (Cassaigne, 1997).
- Fibonacci word: \(f = \lim_{n \to \infty} \varphi^n(a) = abaababaabaababaaba \cdots\)
 where \(\varphi : a \mapsto ab, b \mapsto a\).
Rich Examples

Purely Periodic Rich Infinite Words

- \((abcba)\omega = abcbaabcbaabcba\ldots\)
- \((aab^k aabab)\omega = aab^k aababaab^k aababaab^k aabab\ldots\) with \(k \geq 0\)
- \(v^\omega = vvv \ldots\) is rich \iff \(v = pq\) & all circular shifts are rich

Other Rich Infinite Words

- \(abcd\omega = abcddd\ldots\)
- \(aba^2 ba^3 ba^4 ba^5 b \ldots\)
- \(\lim_{n \to \infty} \sigma^n(a) = ababbababbbbbbabababbababbbbbbbbbbababbbaba\ldots\) where \(\sigma: a \mapsto aba, b \mapsto bb\) (Cassaigne, 1997).
- **Fibonacci word:** \(f = \lim_{n \to \infty} \varphi^n(a) = abaababaabaababaaba\ldots\) where \(\varphi: a \mapsto ab, b \mapsto a\).
- **Tribonacci word:** \(r = \lim_{n \to \infty} \theta^n(a) = abacabaabacabacabacabaaba\ldots\) where \(\theta: a \mapsto ab, b \mapsto ac, c \mapsto a\).
Rich Examples

Purely Periodic Rich Infinite Words
- \((abcba)\omega = abcbaabcbaabcba \cdots\)
- \((aab^k aabab)\omega = aab^k aababaab^k aababaab^k aabab \cdots\) with \(k \geq 0\)
- \(v^\omega = vvv \cdots\) is rich \(\iff v = pq\) & all circular shifts are rich

Other Rich Infinite Words
- \(abcd\omega = abcdd \cdots\)
- \(aba^2 ba^3 ba^4 ba^5 b \cdots\)
- \(\lim_{n \to \infty} \sigma^n(a) = ababbababbbbabababababbbbabababbaba \cdots\)
 where \(\sigma : a \mapsto aba, b \mapsto bb\) (Cassaigne, 1997).
- **Fibonacci word:** \(f = \lim_{n \to \infty} \varphi^n(a) = abaababaabaababaaba \cdots\)
 where \(\varphi : a \mapsto ab, b \mapsto a\).
- **Tribonacci word:** \(r = \lim_{n \to \infty} \theta^n(a) = abacabaacabacabacabaaba \cdots\)
 where \(\theta : a \mapsto ab, b \mapsto ac, c \mapsto a\).
- \(\psi_k(f)\) where \(\psi_k : a \mapsto aab^k aabab, b \mapsto bab, k \geq 0\).
Rich words have appeared in many different contexts; they include:

- **Sturmian and episturmian words**
 Droubay-Justin-Pirillo, 2001: characteristic property 1
 Anne-Zamboni-Zorca, 2005: characteristic property 3
 Bucci-De Luca-G.-Zamboni, 2008: characterization of recurrent rich infinite words

- **Complementation-symmetric Rote sequences**

- **Symbolic codings of trajectories of symmetric interval exchange transformations** – Ferencezi-Zamboni, 2008

- **A certain class of words associated with β-expansions where β is a simple Parry number**

- **Infinite words with “abundant palindromic prefixes”**
 Introduced by Fischler in 2006 in relation to Diophantine approximation
If a finite word w is rich, then its *reversal* \tilde{w} is also rich.

Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its *reversal* \tilde{w} is also rich.

 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.
If a finite word w is rich, then its reversal \tilde{w} is also rich.

Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

If w and w' are rich with the same set of palindromic factors, then they are \textit{abelianly equivalent}, i.e., $|w|_x = |w'|_x$ for all letters x.

Palindromic closure preserves richness.
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its reversal \tilde{w} is also rich.
 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are abelianly equivalent, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.
 The palindromic closure of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its *reversal* \tilde{w} is also rich.

 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.

 The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

Examples:
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its reversal \tilde{w} is also rich.
 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.
 The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

Examples:
$(race)^+ =$
If a finite word w is rich, then its *reversal* \tilde{w} is also rich.

Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

Palindromic closure preserves richness.

The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

Examples:
$(race)^+ = race$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its \textit{reversal} \tilde{w} is also rich.

 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are \textit{abelianly equivalent}, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.

 The \textit{palindromic closure} of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

 Examples:

 $(race)^+ = race car$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its *reversal* \tilde{w} is also rich.

 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.

 The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

 Examples:
 - $(race)^+ = race \text{ car}$
 - $(tops)^+ =$
If a finite word w is rich, then its reversal \tilde{w} is also rich.

Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

If w and w' are rich with the same set of palindromic factors, then they are **abelianly equivalent**, i.e., $|w|_x = |w'|_x$ for all letters x.

Palindromic closure preserves richness.

The **palindromic closure** of a word ν, denoted by ν^+, is the unique shortest palindrome beginning with ν.

Examples:

$(race)^+ = race\ car$

$(tops)^+ = tops$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its reversal \tilde{w} is also rich.
 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.

 The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

 Examples:
 $(race)^+ = race car$
 $(tops)^+ = top spot$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word \(w \) is rich, then its \emph{reversal} \(\tilde{w} \) is also rich.
 \textbf{Example:} \(w = aabac \) and \(\tilde{w} = cabaa \) are both rich.

- If \(w \) and \(w' \) are rich with the same set of palindromic factors, then they are \emph{abelianly equivalent}, i.e., \(|w|_x = |w'|_x \) for all letters \(x \).

- Palindromic closure preserves richness.
 The \emph{palindromic closure} of a word \(v \), denoted by \(v^+ \), is the unique shortest palindrome beginning with \(v \).
 \textbf{Examples:}
 \((race)^+ = race car \)
 \((tops)^+ = top spot \)
 \((party)^+ = \)
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its *reversal* \tilde{w} is also rich.
 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.
 The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

 Examples:
 $(race)^+ = race car$
 $(tops)^+ = top spot$
 $(party)^+ = party$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its reversal \tilde{w} is also rich.
 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are abelianly equivalent, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.
 The palindromic closure of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.
 Examples:
 $(race)^+ = race car$
 $(tops)^+ = top spot$
 $(party)^+ = party trap$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its reversal \tilde{w} is also rich.
 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are \textit{abelianly equivalent}, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.
 The \textit{palindromic closure} of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

Examples:
- $(race)^+ = race car$
- $(tops)^+ = top spot$
- $(party)^+ = party trap$
- $(tie)^+ =$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its reversal \tilde{w} is also rich.

 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.

 The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

 Examples:

 $(race)^+ = race car$

 $(tops)^+ = top spot$

 $(party)^+ = party trap$

 $(tie)^+ = tie$
If a finite word w is rich, then its reversal \tilde{w} is also rich.

Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

If w and w' are rich with the same set of palindromic factors, then they are abelianly equivalent, i.e., $|w_x| = |w'_x|$ for all letters x.

Palindromic closure preserves richness.

The palindromic closure of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

Examples:
$(race)^+ = race car$
$(tops)^+ = top spot$
$(party)^+ = party trap$
$(tie)^+ = tie it$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its reversal \tilde{w} is also rich.

 Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are abelianly equivalent, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.

 The palindromic closure of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

 Examples:

 $(race)^+ = race car$
 $(tops)^+ = top spot$
 $(party)^+ = party trap$
 $(tie)^+ = tie it$
 $(abac)^+ =$
Basic Properties & Results (G.-Justin, 2007)

- If a finite word w is rich, then its reversal \bar{w} is also rich.
 Example: $w = aabac$ and $\bar{w} = cabaa$ are both rich.

- If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

- Palindromic closure preserves richness.
 The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

 Examples:
 $(race)^+ = race car$
 $(tops)^+ = top spot$
 $(party)^+ = party trap$
 $(tie)^+ = tie it$
 $(abac)^+ = abac$
If a finite word w is rich, then its *reversal* \tilde{w} is also rich.

Example: $w = aabac$ and $\tilde{w} = cabaa$ are both rich.

If w and w' are rich with the same set of palindromic factors, then they are *abelianly equivalent*, i.e., $|w|_x = |w'|_x$ for all letters x.

Palindromic closure preserves richness.

The *palindromic closure* of a word v, denoted by v^+, is the unique shortest palindrome beginning with v.

Examples:

$(race)^+ = race car$
$(tops)^+ = top spot$
$(party)^+ = party trap$
$(tie)^+ = tie it$
$(abac)^+ = abac aba$
Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word \(s \) over \(\{a, b\} \) is a **standard Sturmian word** if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots \) over \(\{a, b\} \) (not of the form \(ua^\omega \) or \(ub^\omega \)), called the **directive word** of \(s \), such that

\[
s = \lim_{n \to \infty} Pal(x_1x_2 \cdots x_n).
\]
Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word \(s \) over \(\{a, b\} \) is a **standard Sturmian word** if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots \) over \(\{a, b\} \) (not of the form \(ua^\omega \) or \(ub^\omega \)), called the **directive word** of \(s \), such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n).
\]

\(\text{Pal} \) is the **iterated palindromic closure** function:

\[
\text{Pal}(\varepsilon) = \varepsilon \text{ (empty word)} \quad \text{and} \quad \text{Pal}(wx) = (\text{Pal}(w)x)^+
\]

for any word \(w \) and letter \(x \). **Example:** \(\text{Pal}(aba) = \)
Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1 x_2 x_3 \cdots$ over $\{a, b\}$ (not of the form ua^ω or ub^ω), called the **directive word** of s, such that

$$s = \lim_{n \to \infty} \text{Pal}(x_1 x_2 \cdots x_n).$$

Pal is the **iterated palindromic closure** function:

$$\text{Pal}(\varepsilon) = \varepsilon \text{ (empty word)} \quad \text{and} \quad \text{Pal}(wx) = (\text{Pal}(w)x)^+$$

for any word w and letter x. **Example:** $\text{Pal}(aba) = a$
Properties & Examples

Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1 x_2 x_3 \cdots$ over $\{a, b\}$ (not of the form ua^ω or ub^ω), called the **directive word** of s, such that

$$s = \lim_{n \to \infty} Pal(x_1 x_2 \cdots x_n).$$

- Pal is the **iterated palindromic closure** function:

 $$Pal(\varepsilon) = \varepsilon \text{ (empty word)} \quad \text{and} \quad Pal(wx) = (Pal(w)x)^+$$

 for any word w and letter x. **Example:** $Pal(aba) = ab$
Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1x_2x_3 \cdots$ over $\{a, b\}$ (not of the form ua^ω or ub^ω), called the **directive word** of s, such that

$$s = \lim_{n \to \infty} Pal(x_1x_2 \cdots x_n).$$

Pal is the **iterated palindromic closure** function:

$$Pal(\varepsilon) = \varepsilon \text{ (empty word) \ and \ } Pal(wx) = (Pal(w)x)^+$$

for any word w and letter x. **Example:** $Pal(aba) = \underline{a}b\underline{a}$
Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1x_2x_3 \cdots$ over $\{a, b\}$ (not of the form ua^ω or ub^ω), called the **directive word** of s, such that

$$s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n).$$

Pal is the **iterated palindromic closure** function:

$$\text{Pal}(\varepsilon) = \varepsilon \text{ (empty word)} \quad \text{and} \quad \text{Pal}(wx) = (\text{Pal}(w)x)^+$$

for any word w and letter x. **Example:** $\text{Pal}(aba) = \underline{ab}a a a$
Properties & Examples

Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word \(s \) over \(\{a, b\} \) is a standard Sturmian word if and only if there exists an infinite word \(\Delta = x_1 x_2 x_3 \cdots \) over \(\{a, b\} \) (not of the form \(u a^\omega \) or \(u b^\omega \)), called the directive word of \(s \), such that

\[
s = \lim_{n \to \infty} Pal(x_1 x_2 \cdots x_n).
\]

\(Pal \) is the iterated palindromic closure function:

\[
Pal(\varepsilon) = \varepsilon \text{ (empty word)} \quad \text{and} \quad Pal(wx) = (Pal(w)x)^+
\]

for any word \(w \) and letter \(x \). Example: \(Pal(aba) = \underline{a} \underline{b} a \underline{a} \underline{b} a \)
Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word s over $\{a, b\}$ is a standard Sturmian word if and only if there exists an infinite word $\Delta = x_1x_2x_3 \cdots$ over $\{a, b\}$ (not of the form ua^ω or ub^ω), called the *directive word* of s, such that

$$s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n).$$

- Pal is the *iterated palindromic closure* function:

 $$\text{Pal}(\varepsilon) = \varepsilon \text{ (empty word)} \quad \text{and} \quad \text{Pal}(wx) = (\text{Pal}(w)x)^+$$

 for any word w and letter x. *Example:* $\text{Pal}(aba) = a\underline{b}a a \underline{b}a$

- The *Fibonacci word* is directed by $\Delta = (ab)^\omega = ababab \cdots$.

 That is: $f = \text{Pal}(ababab \cdots) = \underline{a}b\underline{a}ba\underline{b}aba \underline{b}aba \cdots$.
Sturmian Words Are Rich

Theorem (de Luca, 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1x_2x_3 \cdots$ over $\{a, b\}$ (not of the form ua^ω or ub^ω), called the **directive word** of s, such that

$$s = \lim_{n \to \infty} Pal(x_1x_2 \cdots x_n).$$

- Pal is the **iterated palindromic closure** function:
 $$Pal(\varepsilon) = \varepsilon \text{ (empty word)} \quad \text{and} \quad Pal(wx) = (Pal(w)x)^+$$
 for any word w and letter x. **Example:** $Pal(aba) = ababaaba$

- The **Fibonacci word** is directed by $\Delta = (ab)^\omega = ababab \cdots$.
 That is: $f = Pal(ababab \cdots) = abaababaaba \cdots$.

- Palindromic closure preserves richness \Rightarrow Pal does too \Rightarrow Sturmian words are RICH.
Episturmian Words Are Rich Too

\{a, b\} \rightarrow \mathcal{A} \text{ (finite alphabet) gives standard episturmian words.}

Theorem (Droubay-Justin-Pirillo, 2001)

An infinite word \(s \) over \(\mathcal{A} \) is a standard episturmian word if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots \) over \(\mathcal{A} \) such that

\[
 s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n).
\]
Episturmián Words Are Rich Too

\{a, b\} \longrightarrow \mathcal{A} \text{ (finite alphabet) gives } \textit{standard episturmián words}.

Theorem (Droubay-Justin-Pirillo, 2001)

An infinite word \(s\) over \(\mathcal{A}\) is a \textit{standard episturmián word} if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots\) over \(\mathcal{A}\) such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n).
\]

Example

\(\Delta = (abc)\omega = abcabcabc \cdots\) directs the \textit{Tribonacci word}:

\[
r = \underline{abacaba}abacaba \underline{abacaba}abacabaabacabaca \underline{aba}baca \cdots
\]
Outline

1. Rich Words: A Brief Overview
2. Properties & Examples
3. Recent Results
4. Further Work
Let w be a finite or infinite word.
A Connection Between Palindromic & Factor Complexity

- Let w be a finite or infinite word.
- **Palindromic complexity function** $P_w(n)$: counts the number of distinct palindromic factors of w of length n for each $n \in \mathbb{N}$.
Let w be a finite or infinite word.

Palindromic complexity function $P_w(n)$: counts the number of distinct palindromic factors of w of length n for each $n \in \mathbb{N}$.

Factor complexity function $C_w(n)$: counts the number of distinct factors of w of length n for each $n \in \mathbb{N}$.

A Connection Between Palindromic & Factor Complexity
A Connection Between Palindromic & Factor Complexity

- Let w be a finite or infinite word.
- **Palindromic complexity function** $P_w(n)$: counts the number of distinct palindromic factors of w of length n for each $n \in \mathbb{N}$.
- **Factor complexity function** $C_w(n)$: counts the number of distinct factors of w of length n for each $n \in \mathbb{N}$.

Allouche-Baake-Cassaigne-Damanik, 2003: for any aperiodic infinite word w,

$$P_w(n) \leq \frac{16}{n} C_w \left(n + \left\lfloor \frac{n}{4} \right\rfloor \right) \quad \text{for all } n \in \mathbb{N}.$$
Let w be a finite or infinite word.

- **Palindromic complexity function** $P_w(n)$: counts the number of distinct palindromic factors of w of length n for each $n \in \mathbb{N}$.
- **Factor complexity function** $C_w(n)$: counts the number of distinct factors of w of length n for each $n \in \mathbb{N}$.

Allouche-Baake-Cassaigne-Damanik, 2003: for any aperiodic infinite word w,

$$P_w(n) \leq \frac{16}{n} C_w \left(n + \left\lceil \frac{n}{4} \right\rceil \right) \quad \text{for all } n \in \mathbb{N}.$$

Baláži-Masáková-Pelantová, 2007: for any uniformly recurrent infinite word w with $F(w)$ closed under reversal,

$$P_w(n) + P_w(n + 1) \leq C_w(n + 1) - C_w(n) + 2 \quad \text{for all } n \in \mathbb{N} \quad (*)$$
A Connection Between Palindromic & Factor Complexity

- Let \(w \) be a finite or infinite word.
- **Palindromic complexity function** \(P_w(n) \): counts the number of distinct palindromic factors of \(w \) of length \(n \) for each \(n \in \mathbb{N} \).
- **Factor complexity function** \(C_w(n) \): counts the number of distinct factors of \(w \) of length \(n \) for each \(n \in \mathbb{N} \).

Allouche-Baake-Cassaigne-Damanik, 2003: for any aperiodic infinite word \(w \),

\[
P_w(n) \leq \frac{16}{n} C_w\left(n + \left\lceil \frac{n}{4} \right\rceil\right) \quad \text{for all } n \in \mathbb{N}.
\]

Baláži-Masáková-Pelantová, 2007: for any uniformly recurrent infinite word \(w \) with \(F(w) \) closed under reversal,

\[
P_w(n) + P_w(n + 1) \leq C_w(n + 1) - C_w(n) + 2 \quad \text{for all } n \in \mathbb{N}. \quad (\star)
\]

Bucci-De Luca-G.-Zamboni, 2008: infinite words \(w \) for which

\[
P_w(n) + P_w(n + 1) \text{ reaches the upper bound in } (\star) \text{ for every } n \text{ are rich .}
\]
A Connection Between Palindromic & Factor Complexity

Theorem A (Bucci-De Luca-G.-Zamboni, 2008)

For any infinite word w with set of factors $F(w)$ closed under reversal, the following conditions are equivalent:

(I) all complete returns to any palindrome in w are palindromes;

(II) $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all $n \in \mathbb{N}$.
A Connection Between Palindromic & Factor Complexity

Theorem A (Bucci-De Luca-G.-Zamboni, 2008)

For any infinite word w with set of factors $F(w)$ closed under reversal, the following conditions are equivalent:

(I) all complete returns to any palindrome in w are palindromes;

(II) $\mathcal{P}_w(n) + \mathcal{P}_w(n + 1) = \mathcal{C}_w(n + 1) - \mathcal{C}_w(n) + 2$ for all $n \in \mathbb{N}$.

Complementation-symmetric Rote sequences:

- Infinite words over $\{a, b\}$ with factors closed under both complementation and reversal, and such that $\mathcal{C}(n) = 2n$ for all n.

Recent Results

A Connection Between Palindromic & Factor Complexity

Theorem A (Bucci-De Luca-G.-Zamboni, 2008)

For any infinite word \(w \) with set of factors \(F(w) \) closed under reversal, the following conditions are equivalent:

(I) all complete returns to any palindrome in \(w \) are palindromes;

(II) \(P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2 \) for all \(n \in \mathbb{N} \).

Complementation-symmetric Rote sequences:

- Infinite words over \(\{a, b\} \) with factors closed under both complementation and reversal, and such that \(C(n) = 2n \) for all \(n \).
- Allouche-Baake-Cassaigne-Damanik, 2003: \(P(n) = 2 \) for all \(n \).
A Connection Between Palindromic & Factor Complexity

Theorem A (Bucci-De Luca-G.-Zamboni, 2008)

For any infinite word w with set of factors $F(w)$ closed under reversal, the following conditions are equivalent:

(I) all complete returns to any palindrome in w are palindromes;

(II) $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all $n \in \mathbb{N}$.

Complementation-symmetric Rote sequences:

- Infinite words over $\{a, b\}$ with factors closed under both complementation and reversal, and such that $C(n) = 2n$ for all n.
- Allouche-Baake-Cassaigne-Damanik, 2003: $P(n) = 2$ for all n.
- Hence $P(n) + P(n + 1) = 4 = C(n + 1) - C(n) + 2$ for all $n \Rightarrow$ RICH.
Recent Results

A Connection Between Palindromic & Factor Complexity

Theorem A (Bucci-De Luca-G.-Zamboni, 2008)

For any infinite word w with set of factors $F(w)$ closed under reversal, the following conditions are equivalent:

(I) all complete returns to any palindrome in w are palindromes;

(II) $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all $n \in \mathbb{N}$.

Sturmian words:

- Morse-Hedlund, 1940: $C(n) = n + 1$ for all n
A Connection Between Palindromic & Factor Complexity

Theorem A (Bucci-De Luca-G.-Zamboni, 2008)

For any infinite word w with set of factors $F(w)$ closed under reversal, the following conditions are equivalent:

(I) all complete returns to any palindrome in w are palindromes;

(II) $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all $n \in \mathbb{N}$.

Sturmian words:

- **Morse-Hedlund, 1940:** $C(n) = n + 1$ for all n

- **Droubay-Pirillo, 1999:** $P(n) = 1$ for n even, $P(n) = 2$ for n odd
A Connection Between Palindromic & Factor Complexity

Theorem A (Bucci-De Luca-G.-Zamboni, 2008)

For any infinite word w with set of factors $F(w)$ closed under reversal, the following conditions are equivalent:

1. all complete returns to any palindrome in w are palindromes;
2. $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all $n \in \mathbb{N}$.

Sturmian words:

- **Morse-Hedlund, 1940:** $C(n) = n + 1$ for all n
- **Droubay-Pirillo, 1999:** $P(n) = 1$ for n even, $P(n) = 2$ for n odd
- Hence $P(n) + P(n + 1) = 3 = C(n + 1) - C(n) + 2$ for all $n \Rightarrow \text{RICH.}$
Finite Case of Theorem A

Using completely different methods . . .

Theorem (de Luca-G.-Zamboni, 2008)

For any finite word w, the following two conditions are equivalent:

i) w is a rich palindrome;

ii) $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all n, $0 \leq n \leq |w|$.
Finite Case of Theorem A

Using completely different methods . . .

Theorem (de Luca-G.-Zamboni, 2008)

For any finite word w, the following two conditions are equivalent:

i) w is a rich palindrome;

ii) $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all n, $0 \leq n \leq |w|$.

- We also explored various interconnections between rich words, Sturmian words, and trapezoidal words.
Finite Case of Theorem A

Using completely different methods . . .

Theorem (de Luca-G.-Zamboni, 2008)

For any finite word w, the following two conditions are equivalent:

i) w is a rich palindrome;

ii) $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all n, $0 \leq n \leq |w|$.

- We also explored various interconnections between rich words, Sturmian words, and trapezoidal words.
- A finite word w is **trapezoidal** if the graph of $C_w(n)$ as a function of n (for $0 \leq n \leq |w|$) is that of a **regular trapezoid**.
Finite Case of Theorem A

Using completely different methods . . .

Theorem (de Luca-G.-Zamboni, 2008)

For any finite word \(w \), the following two conditions are equivalent:

i) \(w \) is a rich palindrome;

ii) \(P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2 \) for all \(n, 0 \leq n \leq |w| \).

- We also explored various interconnections between rich words, Sturmian words, and **trapezoidal words**.
- A finite word \(w \) is **trapezoidal** if the graph of \(C_w(n) \) as a function of \(n \) (for \(0 \leq n \leq |w| \)) is that of a **regular trapezoid**. Introduced by de Luca in 1999 when studying the factor complexity of **finite Sturmian words**.
Finite Case of Theorem A

Using completely different methods . . .

Theorem (de Luca-G.-Zamboni, 2008)

For any finite word \(w \), the following two conditions are equivalent:

i) \(w \) is a rich palindrome;

ii) \(P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2 \) for all \(n, 0 \leq n \leq |w| \).

We also explored various interconnections between rich words, Sturmian words, and trapezoidal words.

A finite word \(w \) is **trapezoidal** if the graph of \(C_w(n) \) as a function of \(n \) (for \(0 \leq n \leq |w| \)) is that of a **regular trapezoid**.

Introduced by de Luca in 1999 when studying the factor complexity of **finite Sturmian words**.

Every finite Sturmian word is trapezoidal, but not conversely. E.g., \(aabb \) is trapezoidal, but not Sturmian.
Finite Case of Theorem A

Using completely different methods . . .

Theorem (de Luca-G.-Zamboni, 2008)

For any finite word w, the following two conditions are equivalent:

i) w is a rich palindrome;

ii) $P_w(n) + P_w(n + 1) = C_w(n + 1) - C_w(n) + 2$ for all n, $0 \leq n \leq |w|$.

- We also explored various interconnections between rich words, Sturmian words, and trapezoidal words.
- A finite word w is **trapezoidal** if the graph of $C_w(n)$ as a function of n (for $0 \leq n \leq |w|$) is that of a regular trapezoid.
 Introduced by de Luca in 1999 when studying the factor complexity of **finite Sturmian words**.

- Every finite Sturmian word is trapezoidal, but not conversely. E.g., $aabb$ is trapezoidal, but not Sturmian.
- Every trapezoidal word is rich, but not conversely. E.g., $aabbaa$.
Outline

1. Rich Words: A Brief Overview
2. Properties & Examples
3. Recent Results
4. Further Work

Amy Glen (LaCIM)
More Stuff on Rich Words

- *almost rich words*: only a finite number of prefixes do not have a unioccurent palindromic suffix
More Stuff on Rich Words

G.-Justin-Widmer-Zamboni, *Palindromic richness, 2008*

- **almost rich words**: only a finite number of prefixes do not have a unioccurrent palindromic suffix

Example: \((pq)^\omega = pqpqpq \cdots\) where \(p, q\) are palindromes
More Stuff on Rich Words

G.-Justin-Widmer-Zamboni, Palindromic richness, 2008

- **almost rich words**: only a finite number of prefixes do not have a unioccurrent palindromic suffix
 Example: $(pq)\omega = pqpqpq \cdots$ where p, q are palindromes

- **weakly rich words**: all complete returns to letters are palindromes
More Stuff on Rich Words

- **almost rich words**: only a finite number of prefixes do not have a unioccurrent palindromic suffix

 Example: \((pq)^\omega = pqpqpq \cdots\) where \(p, q\) are palindromes

- **weakly rich words**: all complete returns to letters are palindromes

 Example: \((aacbccbcacbc)^\omega = aacbccbcacbc\cdots\)
More Stuff on Rich Words

G.-Justin-Widmer-Zamboni, Palindromic richness, 2008

- **almost rich words**: only a finite number of prefixes do not have a unioccurrent palindromic suffix

 Example: \((pq)\omega = pqpqpq \cdots\) where \(p, q\) are palindromes

- **weakly rich words**: all complete returns to letters are palindromes

 Example: \((aacbcbccacbc)\omega = aacbcbccacbc aacbccbccacbc \cdots\)

- action of substitutions on (almost) rich words
More Stuff on Rich Words

G.-Justin-Widmer-Zamboni, Palindromic richness, 2008

- **almost rich words**: only a finite number of prefixes do not have a unioccurrent palindromic suffix

 Example: \((pq) \omega = pqpqppq \cdots\) where \(p, q\) are palindromes

- **weakly rich words**: all complete returns to letters are palindromes

 Example: \((aacbccccacbc) \omega = aacbccccacbc aacbccccacbc \cdots\)

- action of substitutions on (almost) rich words

- substitutions that preserve (almost) richness
More Stuff on Rich Words

G.-Justin-Widmer-Zamboni, Palindromic richness, 2008

- **almost rich words**: only a finite number of prefixes do not have a unioccurrent palindromic suffix
 Example: \((pq)^\omega = pqpqpq \cdots\) where \(p, q\) are palindromes

- **weakly rich words**: all complete returns to letters are palindromes
 Example: \((aacbccbcacbc)^\omega = aacbccbcacbc aacbccbcacbc \cdots\)

- action of substitutions on (almost) rich words
- substitutions that preserve (almost) richness

Open Problems

- Characterize substitutions that preserve (almost) richness
- Enumeration of rich words
Thank You!

Dammit, I’m mad!

U R 2, R U?

* Both phrases are rich palindromes! *